X-Ray Magnetic Circular Dichroism of Epitaxial Co₂Cr_{1-x}Fe_xAl

Bruce M. Clemens*, Raj Kelekar† and Hendrik Ohldag† †

*Department Materials Science and Engineering

†Department of Applied Physics

Stanford University

†† Advanced Light Source and SSRL

Workshop on Advanced Magnetic Spectroscopy Advanced Light Source Users' Meeting October 10, 2006

Outline

- I. Description of Half Metals and Reasons For Studying Co₂Cr_{1-x}Fe_xAl
- II. Epitaxial Growth and Basic Characterization of Co₂Cr_{1-x}Fe_xAI
- III. Incorporation of Epitaxial Co₂Cr_{1-x}Fe_xAl into Superlattices and Spin Valves
- IV. Electronic and Magnetic Properties of Single-Layer Epitaxial Films
 - A. Measurement of the Spin Polarization
 - B. Study of the Elemental Magnetic Moments
 - C. Quantifying Atomic Disorder
- VI. Conclusions

The Concept of a Half-Metal

- Ferromagnetic and metallic
- Energy gap in one spin channel at Fermi level
- First predicted in 1983 for NiMnSb deGroot et al, Phys. Rev. Lett. 50, 2024 (1983)
- All examples based upon band structure calculations

Half-Metallic Density of States

Nonmagnetic Metal

e.g. Cu, Mg, Au

Ferromagnetic Metal

e.g. Fe, Co, Ni

Half Metal

e.g. CrO₂

Signature of Half-Metals

100 % spin polarization P

$$P = \frac{n \uparrow - n \downarrow}{n \uparrow + n \downarrow}$$
 at Fermi level

The filled spin channel has an integer number of electrons

M_s= Z-n (thumb rule)
 in μB / formula unit
 Z = number of valence e n = an integer

Applications: Tunneling Magnetoresistance

Applications: Giant Magnetoresistance

FM = Ferromagnet

Hard Drive Read Heads

Recent Research on Half Metals

Material	T _c (K)	Polarizatio	n (%) by Point Contact Spectroscopy*
Reference (Not Half- Metal)			
Co	1388	42	[Soulen et. al, Science 282, 85 (1998)]
Oxides			
$La_{0.7}Sr_{0.3}MnO_3$	350	78	[Soulen et. al, Science 282, 85 (1998)]
CrO ₂	386	96	[Ji et.al, Phys. Rev. Lett., 86, 5585 (2001]
Heusler Alloys			
NiMnSb	728	45	[Ritchie et. al, Phys. Rev. B 68, 104430 (2003)]
Co ₂ MnSi	1030	54	[Singh et. al, Appl. Phys. Lett., 29, 2367 (2004)]
Co ₂ MnGe	905	50-60	[Chen et. al , IEEE Trans. Magn. 37,2176 (2001)]

Half-Metallic Heusler Alloys

- High Curie temperatures
- Less demanding growth requirements
- Examples

Cu₂MnAl

Co₂MnGe

Ru₂CrSi

Fe₂VSi

L2₁ Structure

X₂ Y Z

Room Temperature Magnetoresistance in Bulk Powder Compacts of Heusler Alloy Co₂Cr_{0.6}Fe_{0.4}Al

Block et. al, J. Sol. State Chem. 176, 646 (2003)

DOS in Co₂Cr_{1-x}Fe_xAl

Half-metallicity in $Co_2Cr_{1-x}Fe_xAl$ for low x (x \leq 0.6)

Elmers et. al, Phys. Rev. B 67, 104412 (2003)

I. Galanakis, J. of Phys.: Cond. Matt. **16**,3089 (2004)

Miura et. Al, Phys. Rev. B 69, 144413 (2004)

Fecher et. Al, J. Phys. Cond. Matt 17, 7237 (2005)

Antonov et. al, Phys. Rev. B 72, 054441 (2005)

 $M_s = 3 + 2x$ (holds for low x, and approximately for high x, in μ_B / f.u.)

Co₂Cr_{1-x}Fe_xAl Crystal Growth

Singly Oriented Crystalline Samples → Intrinsic Properties

 In the bulk, neither Co₂CrAl nor Co₂FeAl have been grown as a single crystal

In thin film growth
 Single crystal substrate → single orientation
 Can also investigate applications

Outline

- I. Description of Half Metals and Reasons For Studying Co₂Cr_{1-x}Fe_xAl
- II. Epitaxial Growth and Basic Characterization of Co₂Cr_{1-x}Fe_xAI
- III. Incorporation of Epitaxial Co₂Cr_{1-x}Fe_xAl into Superlattices and Spin Valves
- IV. Electronic and Magnetic Properties of Single-Layer Epitaxial Films
 - A. Measurement of the Spin Polarization
 - B. Study of the Elemental Magnetic Moments
 - C. Quantifying Atomic Disorder
- V. Conclusions

Growth of Epitaxial Co₂Cr_{1-x}Fe_xAl

Negative Bias ~ - 500 V

Substrate
 MgO (001) ~ 4% mismatch
 also MgAl₂O₄, Si

- Growth Temperature 500°C (chosen for structural and magnetic properties)
- Targets
 High Purity Al, Fe, Co, Cr
- Capped with Al or SiC

Basic Characterization of Epitaxial Films

- Phases present and crystalline orientation Xray diffraction
- Composition -- Rutherford Backscattering Spectrometry (RBS) and Electron Microprobe Analysis (EPMA)
- Thickness and Surface Roughness X-ray Reflectivity

High Angle X-ray Diffraction of Co₂Cr_{1-x}Fe_xAl

High Angle X-ray Diffraction

- Single phase
- Singly oriented

Rocking Curve FWHMs

High Angle X-ray Diffraction of 1000 Å Films

Single Orientation

• Pole Figures show the (002) oriented along a single direction

No orientations like below

In-Plane Orientation

Typical Phi Scan of MgO and Heusler, for x=0.4

B2 Disorder in Co₂Cr_{1-x}Fe_xAl

- Missing L2₁ (111) peak implies higher symmetry crystal structure
- Similar to bulk

$$\mathsf{F}_{\mathsf{111}} = \mathsf{4} \; |\mathsf{f}_{\mathsf{C}} - \mathsf{f}_{\mathsf{D}}|$$

$$F_{111} = 4 |f_{C} - f_{D}|$$
 $F_{222} = 4 |f_{C} + f_{D}|$

L2₁

B2

B: Cr(Fe),Al

Co₂Cr_{1-x}Fe_xAl Magnetization

M vs H at 5 Kelvin, along [110]

- Magnetization increases with x
- Higher coercivity in low x reuslts from higher structural disorder

M vs T in 5000 Oe, along [110]

- High T_c in x>0
- $T_c \sim 370-380 \text{ K in } x=0$

Magnetization vs Thickness and Composition of Co₂Cr_{1-x}Fe_xAl

 Films homogeneous down to 50 Å

 Reduction of magnetization for low Fe concentration x

Outline

- Description of Half Metals and Reasons For Studying Co₂Cr_{1-x}Fe_xAl
- II. Epitaxial Growth and Basic Characterization of Co₂Cr_{1-x}Fe_xAI
- III. Incorporation of Epitaxial Co₂Cr_{1-x}Fe_xAl into Superlattices and Spin Valves
- IV. Electronic and Magnetic Properties of Single-Layer Epitaxial Films
 - A. Measurement of the Spin Polarization
 - B. Study of the Elemental Magnetic Moments
 - C. Quantifying Atomic Disorder
- V. Conclusions

Superlattices and Spin Valves of Co₂Cr_{1-x}Fe_xAl

Structures for current in plane giant magnetoresistance applications

Multilayers with Cr for x=0.4

Both are cubic

$$a_{Cr}$$
=2.88Å $\leftrightarrow a_{Heusler}$ =2.87Å

Spin valves

Growth of Superlattices

Grown at 350°C

 Reflectivity → roughness ~ 1 monolayer

- Satellite peaks → bilayer peridocity
- Phi scans → cube on cube growth for Heusler and Cr

No Evidence for Antiferromagnetic Coupling

40

Field (kOe)

Giant Magnetoresistance at Room T

- No exchange biasing layer
- Similar results for Field // I
- Trilayers grown on glass show 10x smaller GMR
- Comparable to conventional spin valves

Comparison with other predicted half metals

- First demonstration of large (~7%) giant magnetoresistance in a theoretical half metal
- Addition of exchange biasing layer and further optimization should yield even larger values
- Order of magnitude larger than spin valves with other predicted half metals

```
      PtMnSb
      0.47 %
      Johnson et. al, IEEE TRANS. ON MAGN. 32, 4615 (1996)

      NiMnSb
      1% at 60 K
      Hordequin et. al, J. Magn. Mat. 183, 225 (1998)

      Co<sub>2</sub>MnGe
      0.2%
      Ambrose et. al, J. Appl. Phys. 89, 7522 (2001)

      CrO<sub>2</sub>
      0.2 %
      Miao et. Al, J. Appl. Phys. 97, 10C924 (2005)
```

Recent Results on Tunneling Magnetoresistance in Co₂Cr_{1-x}Fe_xAl

Employing methods similar to ours, Yamamoto et. al recently grew epitaxial films of x=0.4 on MgO \rightarrow tunnel junctions

TMR of 42% at RT and 74% at 55 K

Yamamoto et. al, J. Phys. D 39, 824 (2006)

Current flows perpendicular to plane

Large Magnetoresistances Motivation for Further Study

 Results from spin valve trilayers indicate promise of Co₂Cr_{1-x}Fe_xAl for applications

 Motivate further study of: Electronic and Magnetic Propeties

Outline

- Description of Half Metals and Reasons For Studying Co₂Cr_{1-x}Fe_xAl
- II. Epitaxial Growth and Basic Characterization of Co₂Cr_{1-x}Fe_xAI
- III. Incorporation of Epitaxial Co₂Cr_{1-x}Fe_xAl into Superlattices and Spin Valves
- IV. Electronic and Magnetic Properties of Single-Layer Epitaxial Films
 - A. Measurement of the Spin Polarization
 - B. Study of the Elemental Magnetic Moments
 - C. Quantifying Atomic Disorder
- VI. Conclusions

Point Contact Andreev Reflection (PCAR) Spectroscopy

 Measure conductance as a function of applied voltage bias

Actually measuring

$$\mathsf{Pc} = \frac{\mathsf{I} \uparrow - \mathsf{I} \downarrow}{\mathsf{I} \uparrow + \mathsf{I} \downarrow},$$

rather than

$$P = \frac{n \uparrow - n \downarrow}{n \uparrow + n \downarrow}$$

Superconductor

Soulen et. al, Science 282, 85 (1998)

Effect of P_c on the conductance

- Blonder et. al → first theory, included interfacial scattering Z [Blonder et. al, Phys. Rev. B 25, 4515 (1982)]
- Mazin et. al modified the theory to account for half metals [Mazin et. al, J. Appl. Phys. 89, 7576 (2001)]

Point Contact Andreev Reflection Spectroscopy (PCAR)

- Measured P_c of
 Co₂Cr_{0.6}Fe_{0.4}Al with
 ~ 30 different contacts
- 3 fitting parameters:
 P_c, Z, R_s
- Average P_c of 50%

Effect of B2 Disorder on Spin Polarization of Co₂Cr_{1-x}Fe_xAl

- • Effect on Co₂CrAl
 - Similar results for Co₂Cr_{1-x}Fe_xAl
 - Co disorder significantly affects spin polarization and magnetization

Spin Polarization and Reduction of Moment

Bulk values from Felser et. al, J. of Phys. Cond. Matt. 15, 7019 (2003) and Wurmehl et. al J. Phys. D 39, 803 (2006).

Inomata et. al have reproduced our results for epitaxial films on MgO

Inomata et al. J. Phys. D: Appl. Phys. 39, 816 (2006).

Outline

- Description of Half Metals and Reasons For Studying Co₂Cr_{1-x}Fe_xAl
- II. Epitaxial Growth and Basic Characterization of Co₂Cr_{1-x}Fe_xAI
- III. Incorporation of Epitaxial Co₂Cr_{1-x}Fe_xAl into Superlattices and Spin Valves
- IV. Electronic and Magnetic Properties of Single-Layer Epitaxial Films
 - A. Measurement of the Spin Polarization
 - B. Study of the Elemental Magnetic Moments
 - C. Quantifying Atomic Disorder
- V. Conclusions

Xray Magnetic Circular Dichroism

- Difference in absorption between RHCP(+) and LHCP(-) x-rays
- Study m_{orb} and m_{spin}
- We studied L_3 and L_2 edges (originating from $2p_{3/2}$ and $2p_{1/2}$) of Cr, Fe, and Co

Representative Cr, Fe, and Co dichroism

 Cr dichroism shows small ferromagnetically aligned moment, and change of sign near L₂ edge

Extraction of Moments

• Magneto-optical sum rules [Carra et. al, Phys. Rev. Lett. 70, 694 (1993) and Thole et. al, Phys. Rev. Lett. 68, 1943 (1992)]

$$m_{orb} \sim \frac{(A+B)N_d}{r}$$

$$m_{spin} \sim \frac{(A-2B)N_d}{r}$$

· We modified the sum rules

 N_d / r = C, roughly constant for 1st row d elements (Cr, Fe, Co)

Modified Sum Rules

$$q=\int_{L_3+L_2}(\mu_+-\mu_-)dE$$

$$p=\int_{L_3}(\mu_+-\mu_-)dE$$
 Non-resonant excitation
$$r=\int_{L_3+L_2}[(\mu_++\mu_-)-S]dE$$
 Angle btw photon k and B
$$m_{orb}=-4qN_h/3rP\cos\theta$$

Beam polarization

Number of d holes

$$m_{spin} = -G(4q - 6p)N_h/rP\cos\theta$$
 G = 1 (Fe, Co) = 2 (Cr)

$$r_i = CN_{h,i}W_i$$
 C = const. (for transition metals)

$$m_{orb,i} = \frac{-4q_i}{3W_i CP\cos\theta}$$
 $m_{spin,i} = \frac{-G_i(4q_i - 6p_i)}{W_i CP\cos\theta}$

$$\sum_{i} (m_{orb,i} + m_{spin,i}) W_i = M_s$$

Find $CP\cos heta$ from saturation magnetization

Measure q p M_s

Extract
$$m_{orb} \ m_{spin}$$

Measure $r P \cos \theta$

Extract N_h

Moments vs Composition

Spin Moments vs Composition

Orbital moments small

$$m_{orb}(Cr) \sim 0 \mu B / atom$$

 $m_{orb}(Fe) \sim 0.1 \mu B / atom$
 $m_{orb}(Co) \sim 0.1 \mu B / atom$

Cr Spin Moments in Co₂Cr_{0.6}Fe_{0.4}Al

The Cr spin moment remains small across samples grown at different temperatures and of different thicknesses

vs. Temperature

vs. Film Thickness

Estimation of number of d holes

Can estimate number N_{3d} from absorption spectra

•
$$N_{3d} = r * C$$

Average of N_{3d} for x = 0.4 samples

	Exp. Avg. x=0.4	Theory x=0.375
Fe	3.4	3.5
Со	2.6	2.3
Cr	1.8	5.4

Theory values from Antonov et. al, Phys. Rev. B 72, 054441 (2005)

Change of sign in Cr dichroism spectra

Cr dichroism spectra

Miura et. al, Phys. Rev. B 69, 144413 (2004)

Two Types of Regions

- Low $N_{3d}(Cr)$ from $N_{3d} = r * C$
- Cr dichroism line shape follows B2 DOS

Outline

- I. Description of Half Metals and Reasons For Studying Co₂Cr_{1-x}Fe_xAl
- II. Epitaxial Growth and Basic Characterization of Co₂Cr_{1-x}Fe_xAl
- III. Incorporation of Epitaxial Co₂Cr_{1-x}Fe_xAl into Superlattices and Spin Valves
- IV. Electronic and Magnetic Properties of Single-Layer Epitaxial Films
 - A. Measurement of the Spin Polarization
 - B. Study of the Elemental Magnetic Moments
 - C. Quantifying Atomic Disorder
- VI. Conclusions

Atomic Disorder in Heusler Alloys

 Atomic disorder proposed in general for Heusler alloys

Orgassa et. al, J. Appl. Phys. 87, 5870 (2000) Picozzi et. al, Phys. Rev. B 69, 094423 (2004) Miura et. al, Phys. Rev. B 69, 144413 (2004)

 Only experimental study in Co₂MnGe → nonstoichiometry

Ravel et. al, APL 81, 2812 (2002)

 Results from this work could shed light on related materials as well

Atomic Disorder in Co₂Cr_{1-x}Fe_xAl With Anomalous X-ray Diffraction

Studied (001) reflection → sensitive to A-B disorder

$$|F_{001}| = |f_A - f_B|$$

f_{Cr}, f_{Fe}, and f_{Co} nearly identical at Cu Kα energy

- Work near absorption edges
- In general

$$f(q,E) = f_o(q) + f'(E) + i*f''(E)$$

Modeling Atomic Disorder in Co₂Cr_{1-x}Fe_xAl

Model disorder with two parameters:

d₀: Co on Site B

d₁: Cr(Fe) on Site A

 \rightarrow F₀₀₁(d₀,d₁) and F₀₀₂

gaussian

Anomalous Diffraction Data and Fits

For x = 0 3 pts at Cr edge 8 pts at Co edge

For x = 0.4, 0.6, 1 4 pts at Fe edge 8 pts at Co edge

Atomic Disorder Results

Average disorder over entire sample

B:	Cr(Fe)					

				Site A			Site B	
Sample	d0	d1	Co	Cr(Fe)	Al	Co	Cr(Fe)	Al
Co _{1.12} Cr _{0.39} Al _{0.49} (x=0)	0.21 ±0.01	0.24 ±0.02	91	9	0	21	30	49
$Co_{1.03}Cr_{0.32}Fe_{0.2}AI_{0.45}$ (x=0.4)	0.11 ±0.01	0.15 ±0.04	92	8	0	11	44	45
$Co_{0.99}Cr_{0.21}Fe_{0.3}AI_{0.5}$ (x=0.6)	0.05 ±0.01	0.13 ±0.04	94	6	0	5	45	50
Co _{1.04} Fe _{0.5} Al _{0.46} (x=1)	0.09 ±0.01	0.06 ±0.05	95	3	2	9	47	44
B2 Structure								
$Co_2Cr_{0.5(1-x)}Fe_{0.5(x)}AI_{0.5}$	0	0	100	0	0	0	50	50

Co Anti-Site Disorder

- Two Regions
 - 1) Ordered B2: no Co disorder
 - 2) Disorderd B2: Co anti-site disorder ~ 10% for low x films
- Explains
 - --High resistivity in the Cr containing alloys
 - --Reduction of magnetization

Conclusions

- Grown for the first time epitaxial thin films and superlattices of Co₂Cr_{1-x}Fe_xAl
- Demonstrated for the first time a large giant magnetoresistance, up to 7% at room T, in a predicted half metal
- Measured a spin polarization of 50%
- Modified sum rules for x-ray dichroism to measure a reduced average Cr spin moment of 0.2 μ_B → inferred regions with magnetic Cr and non-magnetic Cr
- Measured anti-site Co disorder ~10% for low x
- Future efforts to resolve disorder could lead to a highly spin polarized and even more promising material

Acknowledgements

- Jo Stohr at SSRL
- Michael Toney at SSRL
- Raghava Panguluri and Boris Nadgorny at Wayne State University
- Arturas Vailionis
- Hertz Foundation

Magnetic Linear Dichroism

 Magnetic circular dichroism measures (M) along k

 Magnetic linear dichroism measures (M²)

Antiferromagnetic Coupling Among Cr?

Cr Difference Signal in Co₂Cr₀.6Fe₀.4Al → No AF coupling

Reference: Cr Difference Signal for AF-coupled Cr on Fe [Knabben et. al, J. Of Elec. Spec. and Rel. Phenom. 86, 201 (1997)]

Schematic of PCAR Spectroscopy

• Compared to the case of $eV > \Delta$

Normal Metal, eV $< \Delta$ Conductance is doubled

Half Metal, $eV < \Delta$ Conductance is zero

Origin of shoulder on Co L₃ edge

Effects of B2 Disorder on Gap?

Galanakis et. al proposed that in Co₂MnGe the states near the Fermi level were nonbonding Co states

These states do not hybridize due to their unique octahedral symmetry

Galanakis et. al, Phys. Rev. B 66, 174429 (2002)

Elemental Spin Magnetic Moments From DOS Calculations

Effect of adding Fe \rightarrow M_s=3+2x for Co₂Cr_{1-x}Fe_xAl in L2₁

- Co spin moment increases from ~0.8 to 1.22 μ_B
- Fe moment ~ 2.8 μ_B

Cr moment ~ 1.5-1.6 μ_B

FIG. 2. Density of states of the majority-spin (positive) and the minority-spin (negative) components of Co_2CrAl with the ordered $L2_1$ structure (solid line) and with the disordered B2 structure (broken line). (a) Total DOS of Co_2CrAl . (b) Atom orbital projected local DOS for Co. (c) Atom orbital projected local DOS for Cr. The vertical dotted lines indicate the position of the Fermi level (E_F) .

FIG. 3. Density of states of Co_2CrAl with the Co-Cr type disorder (the disorder level of 0.1). (a) Total DOS. (b) Atom orbital projected local DOS for Co. (c) Atom orbital projected local DOS for Cr.

Basis for Applications of Half Metals

Applications: Spin Transfer Magnetization Switching

Two ferromagnets separated by a nonmagnetic metal

Exchange interaction between injected spins and atomic moments can switch atomic moments

J. C. Slonczewski, J. Magn. Magn. Mater. **159**, L1 (1996)

Applications: Spin Injection Into Semiconductors

Spin Transistors, Datta and Das, APL 56, 665 (1990)

Change V_G → Current "ON" and "OFF"

Co₂Cr_{1-x}Fe_xAl Resistivity

For x<1

- high resistivity
- upturn at low temperature indicates short mean free path
- Curie temperature for x=0 reflected in resistivity

48-44-40x= 1 (No Cr) 100 200 300 Temperature (K)

For x=1

 Resembles a conventional metallic ferromagnet